Excitation and damping of a self-modulated laser wakefield

نویسندگان

  • S.-Y. Chen
  • M. Krishnan
چکیده

Spatially, temporally, and angularly resolved collinear collective Thomson scattering was used to diagnose the excitation and damping of a relativistic-phase-velocity self-modulated laser wakefield. The excitation of the electron plasma wave was observed to be driven by Raman-type instabilities. The damping is believed to originate from both electron beam loading and modulational instability. The collective Thomson scattering of a probe pulse from the ion acoustic waves, resulting from modulational instability, allows us to measure the temporal evolution of the plasma temperature. The latter was found to be consistent with the damping of the electron plasma wave. © 2000 American Institute of Physics. @S1070-664X~00!04201-4#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators

The effect of asymmetric laser pulses on plasma wave excitation in a self-modulated laser wakefield accelerator is examined. Laser pulse shape and frequency chirp asymmetries, controlled experimentally in the laser system through a grating pair compressor, are shown to strongly enhance measured electron yields for certain asymmetries. It is shown analytically that a positive (negative) frequenc...

متن کامل

Electron Acceleration by Self-Modulated Laser Wakefield in A Relativistically Serf-Guided Channel

The relativistic self-focusing of an intense laser pulse (I 4x 10 TM W/cm 2, ~, = lktm, x = 400 fs) in a gas jet 750 ~tm in length was observed using sidescattering imaging. A self-modulated laser wakefield was generated to accelerate self-trapped electrons. The energy distribution and transverse emittanee of the electron beam changed due to the onset of the relativistic self-guiding.

متن کامل

Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield

The electron beam generated in a self-modulated laser-wakefield accelerator is characterized in detail. A transverse normalized emittance of 0.06 p mm mrad, the lowest ever for an electron injector, was measured for 2 MeV electrons. The electron beam was observed to have a multicomponent beam profile and energy distribution. The latter also undergoes discrete transitions as the laser power or p...

متن کامل

Self-modulated wakefield and forced laser wakefield acceleration of electrons

The interaction of intense laser pulses (power.30 TW) with underdense plasmas has been studied. In the regime where the pulse length is much longer than the plasma period (t l@2pvp ), the laser pulse is found to be self-modulated at the plasma frequency by the forward Raman scattering instability. Wavebreaking of the resulting plasma wave results in energetic electrons being accelerated to more...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999